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Natural convection in a long vertical cylinder 
under gravity modulation 

By M. WADIH A N D  B. ROUX 
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(Received 8 May 1987) 

This study is devoted to the onset of convection in differentially heated cylinders 
under gravity modulation. It specifically concerns the case of a vertical cylinder of 
infinite length, when a negative temperature gradient is maintained in the upward 
direction. The effect of modulation on the stability limits given by linear theory in 
the standard steady case is analysed. A method based on Floquet theory is proposed 
in the case of small values of the modulation amplitude e, for a fixed value of the 
frequency w .  A general technique, called matrix method, which can easily be adapted 
to various kinds of geometries and boundary conditions, has been developed. 
Analytical approaches have been derived in some cases. Finally, an asymptotic 
analysis is presented for large w ,  under very general boundary conditions and 
periodic constraints, for finite e. An asymptotic relation is established for the onset 
of convection under periodic gravity modulation for large w values, when e 4 w ;  the 
mathematical and physical foundations of this inequality are discussed. 

1. Introduction 
A lot of scientific experiments dealing with materials processing or fundamental 

fluid physics have been performed for several years by using the low level of 
gravitation aboard an orbiting spacecraft. Compared to l g  on the ground the residual 
microgravity (pg-) level still affects physical processes ; in addition, this pg-vector 
field is characterized by a steady-state component and by a fluctuating contribution 
called g-jitter. Both these steady-state and fluctuating components can affect fluid 
phases subjected to thermal (or solutal) gradients. Recent studies have been devoted 
to measuring these components during the D1-Spacelab mission, by Hamacher & 
Merbold (1985) and Hamacher, Merbold & Jilg (1986a, b) .  These authors used two 
accelerometer systems. One was operating in a peak detection mode ( 1  Hz) to  reduce 
the total amount of data (peak values within intervals of 1 s were detected from an 
analogue random response in positive and negative directions of the coordinate 
considered) ; it allows one to analyse a band width up to 100 Hz. The second operated 
in a high-rate sampling mode, suitable for performing frequency analysis up to about 
5 Hz. 

We are directly involved in collaborative work with groups doing experiments 
about materials science and fluid physics in space, Most of these experiments are 
done in cylindrical furnaces, as in the D1-mission (Billia et al. 1987 ; Camel et al. 1987 ; 
Henry & Roux 1987). Several other experiments are now prepared. A complete 
understanding of the role of the gravity modulation on the convective motions in 
fluids is needed to better analyse the available results and to better design future 
experiments. 

According to previous workers (Hamacher et al. 1986; Malmkjac et al. 1981; 
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Kinematic viscosity Thermal diffusivity 
u (cm2 s-l) K (cmz s-l) 

Gases lo-' lo-' 
Liquid metals 10-3- 10-1 1 0-2- 1 0 0  

Organic liquids 10-3-10-2 10-4-10-3 
Molten glasses lo2 10-2 
Molten salts 10-3-10-2 10-3 
Silicone oils 10-2-101 10-4 
Water 1 0 - 2  10-3 

TABLE 1. Typical physical fluid properties 

Prandtl number 
Pr 

1 
10-3-10-1 
10-3- 10-1 
103-104 

101- 1 0 4  
100-1 0' 

10' 

Ostrach 1976, 1982), two types of frequencies have to be considered. One type 
corresponds to attitude changes during the orbital motion (very small frequencies) ; 
the other one (g-jitter), which corresponds to spacecraft manoeuvres and mechanical 
vibrations, gives rise to a random frequency band varying from 0.1 to 100 Hz. 

Most of the experiments to be considered are performed in long cylindrical 
containers of small radius (typically one or a few cm) and in furnaces delivering axial 
temperature gradient. Different materials are used, corresponding to fluids covering 
a wide range of Prandtl numbers (see table 1).  

The aim of this study is to analyse the effect of gravity modulation on the onset 
of convection in differentially heated cylinders, considering a wide range of values of w 
and Pr. As a first step, the study is limited to the case of vertical cylinders of infinite 
length, when a negative temperature gradient is maintained in the upward direction. 
After giving the governing equations for small perturbations in $3, and the 
formulation of the stability problem, by using the Floquet theory and expansions of 
the variable in terms of Bessel functions in $4, we propose two techniques to solve 
these perturbation equations. The first one, which is analytical, is presented in $5  for 
boundary conditions of adiabatic type. The second, called matrix method, is 
presented for more general boundary conditions in $6. An asymptotic analysis has 
been considered for large frequencies ; two methods are proposed, respectively, in 
$ 5.2 as an application of the analytical method for small-amplitude modulations, 
and in $ 7 through an original approach, valid for finite-amplitude modulations. 
Comparisons with the available results in the literature concerning the alteration of 
the stability threshold due to different kinds of modulation (gravity or surface 
temperature) will be made, although most of these available results concern the 
classical BBnard problem (i.e. without sidewall confinement). 

2. Presentation of the problem 
As reported by Ostrach (1976), it  was found by previous authors (Richardson 

1967; Pak, Winter & Schoenals 1970; Gershuni, Zhukhovitskii & Iurkov 1970) that 
vibrations can either substantially enhance or retard heat transfer and drastically 
affect convection, by altering the transitions from quiescent to laminar flow (critical 
Rayleigh number) and from laminar to turbulent flow. 

A lot of works have been devoted to the effect of unsteady constraints on the onset 
of convective motion. The mathematical difficulty lies in the fact that the equations 
describing the growth of initial disturbances are non-autonomous and that the 
method of normal modes is not applicable. Several investigations have been made in 
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the case of periodic constraints applied to different shear flows or buoyancy driven 
motions. 

Many authors have established the significant influence of a time-periodic 
excitation on the stability threshold. Hall (1975) studied the linear and nonlinear 
stability of the modulated Couette flow by means of the small-parameter method. In  
addition, he considered the case of large frequencies and arbitrary amplitude. The 
modulated Poiseuille flow has been studied by Grosch & Salwen (1968) who used a 
fourth-order Runge-Kutta method (as proposed by Ralston 1962) for the numerical 
integration of a system of ( N  first-order) differential equations. 

The problem of the convective stability in the presence of a periodically varying 
parameter has first been emphasized by Gershuni & Zhukhovitskii (1963), who 
established the alteration of the stability threshold, by using the first-order 
approximation (one trial function) of Galerkin’s method. This method, which reduces 
a first-order differential system to an ordinary differential equation with periodic 
coefficients, permits one to handle the problem with an arbitrary modulation 
amplitude. It has been used for the classical (unconfined) BBnard problem and for a 
flow confined in a vertical cylinder heated from the bottom (as the one considered 
herein) by Gershuni et al. (1970). For large frequencies, these authors established an 
analytical relation that will be discussed in $8. 

Most of the other studies devoted to the modulation of the surface temperature or 
the gravity, in buoyancy driven flows, concern only the (unconfined) BBnard problem 
with different kinds of boundary conditions. In  the case of small amplitude 
modulations, a basic linear stability analysis has been done by Venezian (1969), who 
studied the effect of the modulation of the temperature gradient on two-dimensional 
small disturbances. Roppo, Davis & Rosenblat (1984) also studied the effect of the 
same kind of modulation, but on three-dimensional disturbances ; in addition, they 
considered the nonlinear stability analysis. For finite amplitude modulations, in 
addition to Gershuni et al. (1970) who used only one trial function (that corresponds, 
in fact, to a separation of variables solution), several authors (Gresho & Sani 1970; 
Rosenblat & Herbert 1970; Rosenbiat & Tanaka 1971; Yih & Li 1972) used a 
Galerkin technique with a small set of trial functions. This small number appeared 
sufficient in the case of rigid and conducting horizontal walls considered by these 
authors, who all establish in different manners the alteration of the stability limit 
under the modulation of constraints. 

The great difficulty lies in the choice of the stability criterion, as discussed by 
Homsy (1974) ; this paper is not dealing with this problem, neither with the other 
fundamental question concerning the ability of the linear theory to predict 
instability. The use of Floquet theory in this paper is based on the stability of the null 
solution in the sense of Liapunov, and thus implies the prediction of the asymptotic 
stability. In  the simpler case, when Mathieu’s equation gives a good approximation 
to the equation of perturbation, one has a simple criterion for linear stability. But, 
in general, Mathieu’s equation does not describe all the properties of evolution 
systems of the Navier-Stokes type. The Floquet theory is in these cases the best 
approach to  the problem. In other cases, the energy method gives sufficient 
conditions for stability, as shown by Homsy (1974) for instance. 
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3. Governing equations 
We consider specifically the case of gravity modulation, 

g = go + €* cos w * t * ,  (3.1) 

where E * ,  w* and t* represent, respectively, dimensional amplitude, frequency and 
time, and go the mean gravity (for space application, ( g o  could be lop3 m sP2 or less) 
applied to a column of a viscous incompressible fluid, in the form of a cylinder of 
infinite length, subjected to a constant temperature gradient, 

dT/dz = - y .  (3.2) 

All fluid properties are constant, except that the density, p,  is varying linearly with 
the temperature in the buoyancy terms according to the Boussinesq approximation : 

P = POL1 -"(T-To)I, 

where a is the volume expansion coefficient and the subscript 8 represents the mean 
condition. Also, we neglect the viscous dissipation terms in the energy equation. 
Thus, following Bird, Stewart & Lightfoot (1960, p. 388) the governing equations 
read : 

- DU/Dt+ vV2 U +  [l -a(T -To)] gk-pol V P  = 0 ,  

- DT/Dt + KV'T = 0. 

(3.3a) 

V * U = O ,  (3.3b) 

(3.3c) 

In  the above, U,  P, v and K are, respectively, the velocity, the pressure, the kinematic 
viscosity and the thermal diffusivity; k represents the unit vector upward, in the 
positive z-direction (antiparallel to gravity) ; D represents the substantive derivative, 
and V 2  is the Laplacian of a vector field in equation ( 3 . 3 ~ )  and of a scalar one in 
equation (3.3c), the expressions for which in cylindrical coordinates are given by Bird 
et al. (1960). (see also Charlson & Sani 1970.) 

These equations admit an equilibrium solution in which U = 0, T = T(z, t )  is a 
solution of 

- aT/at + KV2T = 0, 

and the pressure p ( z ,  t )  balances the buoyancy forces. Of course, the precise form of 
T(z, t )  depends on the boundary conditions. 

In  the equations (3.3) the following splitting of the variables can be used: 

where 8' and p' represent (small) perturbations of the temperature and the pressure 
due to the convective motion. After linearization of the equations (3.3), we obtain the 
usual form of the small-perturbation equations (see for example Gershuni & 
Zhukhovitskii 1963). These equations, for the velocity U of the components (u, zi, w) 
and for 0 and p ,  in non-dimensional form, can be written in cylindrical coordinates 

Pr-l a U/at + V2U+ R(t) 8k - V p  = 0,  (3.4u) 

v .  u= 0, (3.4b) 

- a e / a t + v v + w  = 0, (3.4c) 

where the dependent variables have been non-dimensionalized with ro (radius of 
the cylinder) for length, ri/K for time, K/ro for velocity, pv K / r i  for pressure and 
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yr, for temperature. The equations (3.4) contain two dimensionless parameters : 
the Prandtl number defined as Pr = V / K  and the Rayleigh number, defined as 
R(t) = w ( t )  Y T : / ( I . ’ K ) .  

We consider the following boundary conditions on the sidewalls (at r = 1 ) :  

u= 0, (3.5) 

aO/ar = - be ,  ( 3 . 6 ~ )  

where b is the Biot number. In  the following we will mainly consider the two limit 
cases, corresponding to insulated or perfectly conducting sidewalls, respectively, 

or 

ae/ar = 0, 

e = 0. 

In  addition, the solutions must be regular at r = 0. 

4. Problem formulation 
We consider disturbances of the form 

and 

(3.6b) 

( 3 . 6 ~ )  

( 4 . 1 ~ )  

(4.1 b )  

(4.1 c )  

where a and n denote axial and azimuthal wavenumbers. We also introduce two 
parameters, the mean Rayleigh number, R,, and the vibrational Rayleigh number, E : 

(4.2a) 

(4.2 b )  

where E ,  is the usual non-dimensional modulation amplitude : 

E ,  = “ * / g o .  ( 4 . 2 ~ )  

The aim is to calculate the critical values of R, as a function of E and a ,  for fixed 
Pr and w .  The minimum critical value of R,, R,C, is such that 

aR0(a, s)/aa = 0. (4.3) 

We denote by a, the critical value of a a t  which the condition (4.3) holds. 

modulation is to alter the critical Rayleigh number, such that 
From a physical point of view, in the limit of small values of e, the effect of 

R i ( a c , ~ )  = R&+qc(a,,e), (4.4) 

q,(ac, 0) = 0. (4 .5a)  

where RE, is the critical Rayleigh number in the unmodulated case ( E  = 0) ,  and yc is 
a function of a, and E such that 

Moreover, it can be shown that the change of E into - E  corresponds to the translation 
of the time origin by a half period and, therefore, it does not change the physical 
problem. Thus, for small values of 6, 7, is of the form 

qc(ac,  6) = k62+0(64). (4.56) 
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By using the Taylor expansion of aR,/aa and the power expansion of a,: 

a, = a, + €al + 0 ( e 2 ) ,  

Venezian (1969) demonstrated that a, = 0 and that a, is the critical wavenumber of 
the unmodulated case. In  addition, for an infinite vertical cylinder. Yih (1959) 
proved that a, = 0. Then, we have 

The critical Rayleigh number (4.4) will thus be determined through (4.5b), in which 
the factor k will be computed for the condition (4.6). However, this expression (4.56) 
is not always the most convenient, as E depends on R;. We can give an explicit 
formulation of (4.5b) in terms of 6,;  accounting for the definition (4.2b) of E ,  we 
have 

a, = O(e2) .  (4.6) 

~~+7[2R; , -  ( k ~ $ ) - ' ]  + RE: = 0. 

This expression exhibits two solutions for any E ,  when k < 0. For k > 0 the solutions 
only exist in the domain 0 < E ,  < E:, where E: = 0.5 (R;, k ) @ .  The two solutions are, 
for small E , :  

(4.7a) 

(4.7 b) 

In  practice, as 7, < q z ,  only the first family (4.7a) is interesting for the determination 
of the first instability threshold. 

We restrict ourselves to the case of an infinitely long cylinder for which (after 
Gershuni & Zhukhovitskii 1963) u, w and p are O ( E ) .  From the definition (4.lc), the 
term i3pldz is proportional to p and to a, (equal to 0 ( e 2 )  from (4.6)). This term is 
0 ( c 3 ) ;  it is cancelled, compared to the terms in 2, in (3.4a). Thus, defining a vector 
field X with components w(r ,  t )  and O(r, t ) ,  we obtain from (3.4), 

DX/dt = M, X -  E cos wt NX, ( 4 4  

with 

and 

(4.9a) 

(4.9 b) 

where Pn is a linear operator defined by 

Pn = a2/ar2 + r-' a/& -n2/r2. (4.10) 

The use of Floquet Theory leads us to look for solutions of the following form: 

X(r ,  t )  = eat x ( r ,  t ) ,  (4.1 1) 

such that x ( r , t )  is a periodic function in time. Here cr is the so-called Floquet 
exponent. If we define the small parameter 7 by 

7 = Ro--oo, (4.12) 

where the double index 00 represents the unmodulated conditions, substitution of 
(4.11) and (4.12) into (4.8) gives the equation 

(Moo - d/dt) x = vx + ~ N x  + E cos wt Nx, (4.13) 
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where Moo is defined by 
PrP,  -PrRoo 

Moo=( - 1  Pn 
(4.14) 

In  order to determine the critical stability conditions, we suppose that the effect 
of the modulation is weak when the amplitude E is small. Thus, the parameter 7 
remains small and the solutions at  O(C,T,I) are those of the unmodulated case, 

x = x o o  + O(e,  r ) ,  
fl = g o o  + O(E, 11), 

where xoo is the solution of the eigenvalue problem 

(4.15a) 

(4.15b) 

w o o  - d/dt) xoo = g o o  x o o ,  (4.16) 

with the appropriate boundary conditions. 
According to the principle of exchange of stability, coo = 0 is a simple eigenvalue 

of (4.16). I n  order to investigate the effect of E and 9 on the solution of (4.13) we 
assume 

x=x,o+ c ( E p 9 q x p q ) ,  (4.17a) 
p + q  b 1 

(4.17b) 

Here the critical conditions are obtained for a certain function 7 = q,(s) such that the 

Re { 4 C ,  7&'))) = 0. (4.18) real part of u is zero, 

Substitution of (4.17) into (4.13) and identification of coefficients of like powers of 
E ,  7 and E' leads to the following recursive equations : 

( M o o  - d/dt) xoo = 0, 

(Moo - d/dt) xl0 = gl0 x,, + cos wt Nx,,, 

w o o  - d/dt) xo, = g o 1  xoo + NXOO, 

(Moo - d/dt) x,, = 

(4.19a) 

(4.19 b) 

( 4 . 1 9 ~ )  

(4.19d) 

The first equation corresponds to the unmodulated case. I n  order for the other 
equations to have periodic solutions, the steady part of the right-hand side must be 
orthogonal to the null space of the adjoint operator of Moo. Denoting by (X I Y) the 
scalar product, the solvability conditions of the equations (4.19) are 

x,, + gl0 xl0 + cos wt Nx,,. 

u10 = 0, 

g o 1  = - (Nxoo I xo*oo>/(xoo I xo*o>, 

v20 = - (COS wt Nx,, I xo*o>/(xoo I x:o,>> 

(4.20a) 

(4.20 b )  

where the bar denotes a time average. The expansion (4.17b) reads 

(7 = quOl +€2U,,, 

and the condition (4.18) becomes, as gol is real, 

qC = -Re(cr,o)/aol~2+O(s4). 
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Thcrcforc. according to the notation (4.5b), we have 

lc = -Re(g2,)/crOl. 

Representing x,, in the form 

(4.21) 

xl, = x1 eiwt +(conjugate), (4.22) 

we have, from (4.196), to solve the following problem for xi,: 

(M,,-io)x~, = O.5Nx0,. (4.23) 

The system (4.19) will be solved in the following paragraphs with two different 
techniques based on the use of Bessel functions. An analytical approach is considered 
in the following paragraph for the adiabatic boundary conditions, while a more 
general method, called matrix technique, is presented in $6. 

5. Analytical approach (adiabatic case) 
In this section we consider an analytical approach to solve the problems (4.19). In 

order to alleviate the presentation of the method we will consider the adiabatic 
conditions (3 .6b)  only. For the unmodulated case (4.19a), we have 

uloo = L ( t r ) - P  Jn(tr)> (5.1) 

8 0 0  = [In(tr) +P Jn(tr)I t-2> (5.2) 

where 5 = ~ i o ?  P = 'n(t)/Jn(t)- (5.3) 

J ,  and 1, arc rcspcctively, the Bessel function and the modified Bessel function of 
order n. Thc critical values of 5 are the ones satisfying the following characteristic 
relation : 

-&(t)JA(t) +'h(t)Jn(t) = 0- (5.4) 

where the prime denotes a first derivative. Then, the critical value of the Rayleigh 
number for the unmodulated case is given by 

REo = (&4. (5.5) 

For n = 0 and n = 1 respectively, we have the classical solutions 

= 4.611, h?:, = 452.1, 

= 2.871, RX, = 67.9. 

(5.6,) 

(5.6b) 

5.1. General case finite o) 
In order to solve the system (4.19) we introduce the scalar product 

(XI Y) = X s Y d r .  1: 
In fact. it is convenient to multiply all the equations (4.19) by r ,  since rP, is self- 
adjoint. The adjoint operator of r M , ,  is 
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The.nul1 space of (rMo0)* is generated by the vector xzo of components 

w ; ~  = woo, ei0 = P r  P, woo. 

The solvability conditions (4.20) of the equations (4.19), multiplied by r ,  are 

l r N x o o  xf0 dr 

> 

rxoo. x$, dr s 
s 

g o 1  = 

r( cos wt Nx,,) - xz0 dr 

rxOO. xz0 dr  

s 
c 2 0  = 

(5 .7a)  

( 5 . 7 b )  

To O(e4,q2),  owing to the form of N ,  we only need to know the O;, component of 
xio, which has to satisfy the equation (4.23). We have to solve the following problem 
for O i o :  

(Pi - hP, - p) e;, = @,,, (5.8) 

with the two boundary conditions 

where h and /3 are defined by 

h = iw(l+Pr-l), /3 = w2Pr-l+t4. 

Note that here and in the following, &' will represent 5". 
If the discriminant of (5.8) is different from 0, i.e. , 

h2 + 4p + 0 or 02( 1 -2'r-l)'- 4t4 + 0, 

the general solution of (5.8) is 

e;, = " l L ( Y 1  r )  +a,Jn(,(y, +P14z(tr) + P z J n ( t 4 ,  
where PI, p,, y1 and yz are defined by 

PI = - [ 2 t 2 ( w  Pr-' + AgZ)Ip1, 
pz = p[2t2(  -02Pr-1+h62)]-1, 

y1 = {+[A + ( A 2  + 4/3);]1>;, 

yz = {+[ - h + ( A 2  + 4P);l);. 

Then, the boundary conditions (5.9) give 

(5.10) 

(5.11) 

(5.12) 
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0.0003 I I 

-1 
0.0002 I I n = 1; ins. I 
0.0001 

k 0 

-0.0001 

-0.0002 +- Pr = 0.005 

0.0020 

0.0015 

0.0010 

0.0005 

0 

+- Pr = 0.1 

10-1 1 00 10' lo2 103 
w 

FIGURE 1 (u,, b ) .  For caption see facing page, 

Finally, the expression of k from (4.21) is 

where 

(5.16) 

I K: = r J i ( t r ) d r  s 
These integrals (5.16) have been solved analytically. The computation of (5.15) 

requires an accurate evaluation of 6 when solving (5.4) and an accurate determination 
of the Bessel functions occurring in (5.13)-(5.14) and (5.16), mainly when w+0. The 
method has been presented for insulated walls (3.6b), but it could be extended to the 
case of perfectly conducting walls ( 3 . 6 ~ ) .  The values of k have been calculated from 
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lo-' loo 10' lo2 103 104 
w 

0.0003 

0.0002 

0.0001 

0 

-0.0001 

-0.0002 

- 0.0003 

I , I  

1 oo 10' 1 op 103 104 
0 

FIGURE 1 .  Alteration factor 11s. frequency, for the insulated case at (a )  < Pr < 
( b )  10P < Pr < 2 x lo-'; ( e )  0.5 < Pr < 5; ( d )  5 < Pr < 100. 

(5.15) in the case n = 1 for a wide range of w values and for lop3 < Pr < lo3. The 
results are presented in figures 1 (a)-1 ( d ) ,  respectively for < Pr < 

6 Pr < 2.10-l, 5.10-' < Pr < 5 and 5 < Pr < 100. These figures show 
that for the lowest and the highest Pr values, k becomes negative for small w ,  
indicating that in this case the gravity modulation diminishes the critical value of the 
Rayleigh number for the onset of the convection compared to the unmodulated case, 
i.e. RE < R&,. As k appears to tend asymptotically to a minimum when o+0, we 
considered its limit value k(O) ,  to specify the domains of Pr for which b can take 
negative values (figure 2).  In  these domains (which correspond to Pr < 8 x lop3 and 
Pr > 8) k is negative from w = 0 up to a limit value of w which depends on Pr;  
typically this limit is w - 0.1 for Pr < 8 x lop3 (figure l a )  and o - Pr for Pr > 8 
(figure l d ) .  

For high w ,  k is positive for any Pr and goes to zero when w +  00. This behaviour 
is better illustrated by the log-log plotting in figures 3 ( a )  and 3 ( b ) ,  respectively for 
0.01 < Pr < 0.2 and 0.5 < Pr < 5,  which shows that the value of k behaves as o-2 
when w+00. This property wilI be demonstrated in $5.2, for any Pr, in the specific 
case of the insulated wall and, under more general hypotheses, in $7 .  
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0.002 

0.001 

k(O) 

0 

-0.001 
10-3 10-2 10-1 100 101 102 103 

Pr 

FIGURE 2. Alteration factor a t  w = 0 vs. Prandtl number, for insulated and conducting cases. 

(a) 10-2 
-+ Pr = 0.2 

10-3 

k 

10-5 

10-2 lo-' loo 10' 1 o2 103 

lo-* 
(6) 

10-3 

k 

10-5 

lo-6 

w 

lo-' 100 10' lo2 103 104 
w 

FIQURE 3.  Alteration factor us. frequency, for the insulated case at (a )  0.01 < Pr < 0.2; 
( b )  0.5 < Pr ,< 5 .  

Finally, we can remark that the condition (5.10) is always satisfied for Pr = 1 .  But 
for Pr =+ 1 ,  this condition is not satisfied for 

w = wd = 2[Pr /IPr- l [ .  (5.17) 

For such a frequency the two first terms of the right-hand side of (5.1 1) are no longer 
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linearly independent. A specific study would have to be done in that case, but in fact 
we observe that the expression (5.15) gives continuous results even for w = wd.  This 
continuity means that the value w = wd is not a singular point; this feature will be 
confirmed by the results of the matrix method developed in $6. 

5.2. Limiting case : w + co 
If we use the asymptotic representation of Bessel functions for large values of the 
argument, i.e. 

I,(x) = eZ[l + ~ ( x - l ) l  (2xx)-:, (5.18) 

and Jn(x)  = [cos (x-*nx-$q +O(x-')] ($xx)", (5.19) 

we find that the most important term in the numerator of k in (5.15) is 

Thus, (5.20 a )  

(5.20 b)  

This relation, (5.20b). confirms the behaviour seen in figures 3(a) and 3(b) and in 
addition, shows that k is proportional to P r  for large w .  Thus, the critical Rayleigh 

(5.21) 
number for large o is RE = REo + 0.5 Pr[&/wl2 .  

It is always greater than REo which is given by (5.5). 
I t  can be noted that (5.20) and (5.21) have been established under the condition 

(5.10), which is discussed at the end of $5.1. For the large values of w considered in 
this paragraph, the condition (5.10) is always satisfied. We will recover the relation 
(5.21) in a quite general case, by a direct asymptotic analysis presented in $ 7 .  

6. Matrix method 
Our aim in this section is to present a general method for solving the system (4.8) 

by the use of trial functions. The advantage of this method is that  it can be easily 
extended to  general boundary conditions and geometries, especially for confined 
cylinders (finite length). Here, the case of infinite cylinders only is considered, with 
either conducting or insulated walls. We mainly focus our attention to the case n = 1,  
which corresponds to the basic mode of instability for long cylinders (Ostroumov 
1952; Yih 1959; Charlson & Sani 1971). Then the system (4.8) can be written 

- = -w+P18,  
ae 
at 

with the boundary conditions (3.5) and (3.6). 
The linear operator PI in the equations (6.1) and (6.2) is defined from (4.10) as 

Pl = a2/ar2 + r-' a/ar - r-2 
We use the expansions 

UI = C ai( t )  w i ( r ) ,  
i 

8 = C bi( t )  e i ( r ) ,  
i 
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where the trial functions wi and Oi satisfy the equations 
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P, wi = -g  wi, (6.6) 

PI@, = -y ;o i ,  (6.7) 

wi( r )  = Jl(tir)> (6.8) 

Oi(r)  = J l ( r i r ) ,  (6.9) 

and the boundary conditions (3.5) and (3.6). The solutions are 

J, being the first-order Bessel function, and ti and yi satisfying the relations 

Jl(ti) = 0, (6.10) 

and J i ( y i )  = 0, for insulated walls, ( 6 . 1 1 ~ ~ )  

or 

or 

J,(Yi) = 0 for conducting walls, (6.11 b) 

y iJ ; ( y i )  + b Jl(yi) = 0 (6 .11~)  for finite Biot number. 

By substituting (6.4) and (6.5) into (6.1) and (6.2) respectively, and multiplying 
these equations by rwj and re j ,  and then integrating on the interval r E [ O ,  11, we 
obtain the system 

K dX/dt = MX, (6.12) 

with (6.13) 

where matrices K,, K,, A,, A,, and C are defined by their general term [ K l i j  =; 1; rwi wj dr,  

rP, wi wj dr, Ali j  = 

f l  f l  

Azij = rP, Oi 0, dr, c 
and where tC denotes the matrix transpose of C. 

6.1. General thermal boundary conditions 

As in $4, we use the parameter 7 and the Floquet exponent u. Thus the perturbation 
equations (6.12) can be written as 

(Mho - d/dt) x = u~ + ~ N ' x  + E cos wt N x ,  (6.14) 

where M;, and N are defined by 

(6.15) 

where K;' and Kil represent the inverses of K, and K,. 

(4.19). The solvability condition (4.20) for these equations reads 
We also look for solutions of the form (4.17) and get recursive equations of the form 

( 6 . 1 6 ~ )  

gz0 = 0.5 I { N ( M ~ o + i w / ) ~ l } N ' x o o ) / ( x , * ,  I xoo) .  (6.16b) 

g o 1  = ( 4 0  I N'xoo)/<x,*, I xoo>, 
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FIGURE 4. Alteration factor us. frequency, for the conducting case at (a) 1 < Pr < 10; 
(b )  0.1 < P r  < 1 .  

w 

In  these expressions the symbol ( I ) denotes the standard scalar product, I is the 
identity matrix, 

xoo is a solution of Mhoxoo = 0, 

and x,*, is a solution of tMAox$o = 0. 

Thus, from the expressions (6.16a, b ) ,  we can compute the values of k defined by 
(4.21). These computations depend on Rgo (the classical critical Rayleigh number for 
the unmodulated case), values of which are, respectively, 67.963 and 215.560 for the 
insulated and conducting cases. The computations which have been done for a wide 
range of w and Pr values need a highly accurate algorithm to invert matrices, mainly 
for insulated walls. The influence of the number of trial functions L has been 
checked ; most of the computations have been done with L = 30 for insulated walls, 
while L = 5 appeared sufficient for conducting walls. 
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For insulated walls, the results recover well those of the analytical method of 54; 
they would give exactly the same graphs as in figures 1-3 and thus are not repeated 
here. 

For the conducting case, the computations carried out in the range 0 < w < lo4 are 
plotted in figures 4 ( a )  and 4 ( b )  respectively, for 0.1 < Pr < 1 and 1 < Pr < 10; they 
show that Ic is always positive and reaches a maximum when w + 0. The limit value 
of k when w + O ,  denoted k ( O ) ,  is also presented in figure 2 ;  this graph, which is 
plotted as a function of Pr, shows a ‘symmetry’ with respect to Pr = 1 (the results 
being identical for Pr and 1/Pr) when w + 0 .  

6.2. Particular case (n  = 1 ,  conducting walls) 

Due to the symmetry existing in the case n = 1, for conducting walls, the matrices 
K,, K,, A,, A, and C are diagonal and thus the expressions (6.15) can be considerably 
simplified. The exprcssions (6.16) can be analytically determined after some algebra 
and. finally, k emerges as 

Ic = 0.5 P r [ w 2 + ~ ~ , ( ( Y r + 1 ) 2 ] - 1 .  (6.17) 

For a given Pr, k reaches a maximum when w-+O. The limiting form of (6.17) is 
then 

k ( 0 )  = 0.5 R&l (Pr-i+Pri)-2 (6.18) 

As already mentioned, it exhibits ‘symmetry’ with respect to P r  = 1 (see figure 2). 
The relation (6.17) has been used to control the validity of the numerical code used 
to calculate the expressions of (6.16) and k through (4.21), for the entire domain 
0 < w < CO. The agreement is very good, the three first decimal places being identical. 
This confirms the results plotted in figure 4(a, b )  and proves that k is positive for any 
Pr and w .  This contrasts with the adiabatic case, where k takes negative values for 
small w ,  when Pr is small or large enough (see figure 2 and figures 1 (a)-(d)) .  

When w tends to infinity, the expression (6.17) for conducting walls recovers the 
relation (5.20b) established for the insulated case, indicating no effect of the thermal 
boundary conditions in the alteration factor k ,  under gravity modulation. This 
property will be confirmed for more general conditions in the following paragraph. 

7. Asymptotic analysis for large values of w 

following form : 

in which M, has distinct eigcnvalues and N is a nilpotent matrix (i.e. N2 = 0). Of 
course, these conditions for M, and N were already satisfied in the equation (4.18) 
used in the previous sections. But they apply for rather more general situations 
(other kinds of periodic modulations or geometries) ; they are satisfied for most of the 
periodic modulations usually cwnsidered in the literature (gravity modulation or 
tempcraturc modulation of surfaces). Note, in addition, that equation ( 7 . 1 )  is of the 
same type as (6.12) if K is invertible. 

The present analysis is developed for large o. However, in contrast with the 
previous paragraphs where e was assumed to bc small, we now consider that  t: may 
increase, but such that 

We present in this section a general asymptotic analysis of equations of the 

dX/dt = M , X + e  cosotNX, (7 .1 )  

E / W  4 1 .  (7.2) 

Venezian (1969) also dcvcloped an asymptotic analysis ; he, however, assumcd that 
t: remains small and explains the reasons why the inequality (7.2) limits the validity 
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of his own results. Another asymptotic analysis has been proposed by Gershuni et al. 
(1970) with finite amplitude modulations but in the framework of a separation of 
variables solution ; they derived an analytical relation that will be discussed further. 

We now introduce a new small parameter 

6 = € / W ,  

and we look for solutions of the form 

X =  exp[u,(t)N+u,(t)N,] Y ,  

with ul(t) = S sinwt, uz(t) = 6' sin2wt/4w, N, = NM, N. 

Then, the equation (7.1) can be written: 

d Y/dt = Lo Y -  (u, M, - U, MJ Y -  ( 2 ~ ,  U ,  N, M, N + U: N, M, N,) Y ,  

with Lo = M,-0.562N,, M, = NM,-MoN, M, = N,M,-M,N,. 

At O(S3) equation (7.6) reads 

d Y/dt = Lo Y -  6 sin wt M, Y + 6' sin 2wt/4w M, Y.  

This equation (7.7) can be solved as in the previous sections by using 7 and 6 instead 
of € :  

Y =  Yo,+ c d P r P  ypg, 
P + @ > l  

(7.8) 

(7.9) 

where Lo, is obtained from 1, by taking Roo instead of R,. 

obtained for 
When the principle of exchange of stability is valid, critical conditions are 

vc = - { 0 . 5 ( N z Y O 0 ~  qo)+(s inwtM2 Y,,I ~,)>S2/(NYooI Y$0)+O(64), (7.10) 

where the bar represents time averaging. 
If we remark that the second term in (7.10) is O ( W - ~ ) ,  since 

sin wt M, Y,, = 0.5 M, Re (Loo-iw)pl M, Y,, ( 7 . 1 1 ~ )  

= 0 . 5 M , L , , [ ( L , , ) 2 + w 2 ] ~ ' M ,  yOo ,  (7.11b) 

(7.12) 
we have 

V c  = -{0.5(N, yOol qo)l<NY,,I q,)+o(w-2)$62+o(61). 

This is quite a 'universal' result in the sense that it applies for any kind of fluid 
layer geometries and periodic constraints, under the assumptions only that N2 = 0 
and that the principle of exchange of stability is valid. With appropriate operators, 
this analysis can also be applied to bounded domains. 

In  the case of an infinite vertical cylinder, as considered in the previous sections, 
we have from (7.5) 

-PrR, 0 Pr )i0 0 )  = (: = -PrN. (7.13) 
pn 
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Substitution of (7.13) into (7.12) gives 
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yc = [0.5rr+0(0-,)]6’+0(64), 

or. in terms of e ye = ~ ~ [ 0 . 5 P r w - ~ + O ( w - ~ ) ] .  (7.14) 

Finally, using the definition (4.5b) for k ,  we find 

k = 0.5 Pr w Y ,  (7.15) 

which is identical to (5.20b). This result confirms well the lack of effect of the thermal 
boundary conditions mentioned in $6.2. 

8. Other non-dimensionalization and comparisons 

expressed in terms of dimensional variables as 
We can remark that the asymptotic expression (7.15), for E / W  < 1, can be 

or 

yc = 0 . 5 ( a ~ ) ~  ( r t / u K )  [e*/w*]’, 

R;/RS,, = 1 + 0 . 5 a y g ~ 1 [ s * / w * ] 2 ,  

where [€*/@*I represents a vibrational velocity and [g,/ay]f a reference velocity. The 
expression (8.2) is independent of r,,, u,  K and Pr, while the expression (8.1) shows that 
r i / ( u K ) i  should be take as a reference time, as in the study of Gershuni et al. (1970). 
Introducing the new non-dimensionalized frequency Q = w/Pri ,  which corresponds 
to this reference time, the asymptotic expression (7.15) becomes independent of Pr, 
and we have, respectively, in terms of e and e, (with s, = €*/go) 

ye = 0.5[e/QI2 ( 8 . 3 ~ )  

and qc = 0.5[RE,e,/0]2. (8.3b) 

It would also be interesting, instead of k ,  to introduce the variable le” defined by 

k“ = kQ2, (8.4) 

such that yc = k”[€/Q]2 ,  ( 8 . 5 ~ )  

and ye = k”[R;, ev/O]z. (8 .5b)  

Then the limit when Q +  co simply is a constant, k” = 0.5, as illustrated in figure 5 .  
The relation (7.14) can be compared to the relation (4.4) of Gershuni et al. (1970) 

for large w ;  indeed, by putting R = RS/R& in (4.7), we have 

R - 1 = 0.5 R2k, C: with k ,  = RE, Pr w - ~ .  (8.6) 

The expression (4 .4)  of Gershuni et al. (1970) recovers (8.6) but with a different 
coefficient, k ,  = m-2PrwP, where m is such that R&m2 = 1 + ( + , ~ ~ ; - 4 ) / ( b + 3 ) ~ ;  
b being the Biot number as introduced in the condition ( 3 . 5 ~ )  and ,ul the first 
zero of J,(p,), i.e. p1 = 3.832. For the limiting case b +  00 (conducting walls), where 
R,C,m2 = 1, the two expressions for k ,  are identical. This perfect agreement is 
probably due to the fact that in this case all the matrices (Kl ,  K,, A,, A, and C )  are 
diagonal and the first-order approximation of Gershuni et al. (1970) in their relation 
(1.17) is valid. But, for finite b ,  the expression (4.4) of Gershuni et al. (1970) would 
involve an extra effect of the boundary conditions, while in (8.6) this effect of the 
boundary conditions enters only through R&, ; the first-order approximation used by 
these authors seems to be no longer valid for finite b. 
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FIGURE 5 .  Modified alteration factor k us. frequency 52, for the conducting case; 1 < Pr < 1000. 

We can remark that the expression (8.6), like the relation (4.4) of Gershuni et al. 
(1970), admits two solutions, one valid for Rg close to R,“, and the other for large 
Rg. The first solution, which has to be retained when E ,  6 w ,  reads 

R, = l + 0 . 5 k V e t .  (8.7) 

(8.8) 

It corresponds, in fact, to yl given by (4.7a), that can be written as 

yl = 0.5 RS0 k,e: = 0.5 Pr o-2 Rg,2 E: .  

Another interesting feature concerning the use of the frequency 52 is that, for 
conducting walls, the alteration factor k can be expressed from (6.17) as 

k”(52, Pr) = 0.5 [1+ Rgo(Prt+Pr-i)2 522-2]-1. (8.9) 

This expression exhibits a ‘symmetry’ with respect to Pr = 1 (i.e. V(52,Pr) = k(52, 
l /Pr)) ,  for any values of 52, and presents a maximum at  Pr = 1 .  The graphs of k are 
plotted as a function of 52 in figure 5, for several values of Pr (namely 1, loe1, 
and lop3). 

For finite o, a direct comparison of the alteration factors (with the ones available 
in the literature) can only be made with the results concerning the modulated- 
BBnard problem with surface-temperature modulation which has been considered by 
Venwian f1969)l Rosenhlat RT Herbert 11970) and  Ronno P t  01 11984) An analvtic 

.I - - -  - _. - -. . . -. ,-- - - ,’ ..__ . ~ ~ ~ .  _. _ _ _ _  . ._. ,--. ‘, ~ ~ ~ - ~ . ~ . -  -. .... ,---_,. _ _ _ _  _.__... 

expression based on series expansions has been proposed by Venezian (1969) (see his 
~~ ~. . ~ .  

expression (45)). The comparison has been made through the alteration parameter 
Ro2/Roo plotted by Roppo et al. (1984) against w ,  in the range 0 < w < 100. This 
parameter is simply obtained from the Venezian’s formula (45) by dividing it by the 
neutral stability threshold for free and conducting horizontal surfaces (Roo = x4). 
With our notation, the Venezian parameters R, and Ro2/R,,, respectively correspond 
to the ratio ql/Rgo and to the product kRgo (where and k are give by ( 4 . 7 ~ )  and 
(6.17) respectively, and where R:, = 215.56 for conducting sidewalls). The curves 
giving kR&, versus w are plotted in figure 6 for three values of Pr, namely Pr = 0.1, 
1 and 10; they show a perfect agreement for w = 0 between our results for a vertical 
cylinder of infinite length in the conducting case and the ones corresponding to 
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FIGURE 6. Modified alteration factor lcR& us. frequency, for the conducting case; ----, present 
results, vertical cylinder of infinite length (gravity modulation) ; - , results plotted by Roppo 
et al. (1984) after Venezian (1969), horizontal layrr of infinite extent (temperature modulation), for 
the modulated-Bhard problem, at Pr = 0.1, 1 and 10. 

w 

modulated-B8nard problems for free and conducting surfaces. Indeed, by using 
( 4 . 7 ~ )  and (6.17), we get for small ev 

with 

%/&o = wet.;, (8.10) 

(8.11 a )  

(8 .11b)  

kR& = 0.5 Pr R&,[w2 + R;,(Pr + 1)'I-l 

= 0.5 [w2(Pr R&- '+  (f'r-3+Pri)2]-', 

At w = 0, the expression (8.11b) gives 

kR;, = 0.5 (Pr-i+ Pri)-2, (8.12) 

which is strictly identical to the expressions obtained by the previous authors 
(relations (46) by Venezian 1969, and (4.16) by Rosenblat & Herbert 1970) for the 
modulated-B8nard problem with surface-temperature modulations. Such an identity 
proves that for w + 0 the stability alteration (with respect to the unmodulated case) 
is not only independent of the type of periodic modulation (surface-temperature or 
gravity) as previously mentioned by Gershuni rt al. (1970), but also independent of 
the type of geometry (confined or not confined). In the same manner the 'symmetry' 
property of (6.18) which associates the results at Pr and 1/Pr, appears to be quite 
'universal'. It can be noted that Homsy (1974) also mentioned a similar property in 
the Be'nard configuration according to the results of the energy method. 

We can also observe in figure 6 a qualitative agreement, for Pr d 1, between our 
results and the ones corresponding to the modulated-B8nard problem, in the domain 
0 < w < 100. This agreement is confirmed by additional comparisons given in 
figure 7 (a ) ,  for Pr = 0.01 and Pr = 0.001 ; a quite similar behaviour of the alteration 
parameter is found for the cylindtr and the Be'nard problem on the range 0 < w d 20. 
At Pr = 10, on the contrary, a q&e different behaviour is observed; it is more 
accentuated again a t  Pr = 100, as shown in figure 7 ( b ) .  The expression (8.1 1 a )  shows 
that the results for the cylinder a t  large Pr behaves like */cur + 2 )  when w -+ Pr, while 
Venezian's expression (45) shows that the modulation parameter becomes negative 



Natural convection in a long vertical cylinder under gravity modulation 411 

100 
A Pr = 0.001 

Pr = 0.01 
Venezian (1969) 
horizontal laver 

10-1 

10-3 

10-4 

10-5 

Present results 

0 20 40 60 80 100 120 
w 

(b) 

0.060 

0.040 

kR& 0.020 

0 

-0.020 
0 20 40 60 80 100 

w 

FIGURE 7 .  (a) Modified alteration factor kRoo vs. frequency, for the conducting case ; comparison with 
the results of Venezian (1969) for the modulated-B6nard problem, a t  Pr = 0.001, 0.01 and 0.1. 
(b)  Modified alteration factor kR;, us. frequency, for the conducting case; comparison with the 
results of Venezian (1969) for the modulated-B6nard problem, a t  Pr = 10 and 100. 

after o = 7 for Pr = 100. Thus, for high Pr,  the constraint modulations can be 
destabilizing for the modulated-B8nard problem, while they are always stabilizing in 
the conducting case for the vertical cylinder. 

9. Results and discussion 
We have seen that a perfect agreement is found, in the case n = 1, between the 

values of k given by the analytical methods presented in $5.1 and $7 and by the 
matrix method of $6 when using 30 and 5 trial functions for, respectively, insulated 
and conducting walls. 

The knowledge of k, which is analytically given by (5.15) and (6.17),  respectively, 
in the insulated and conducting cases, permits us tjo determine y1 from ( 4 . 7 ~ ~ ) .  

14 FLAl I!):% 
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However we have seen that, for k > 0 the solution only exists for ev < e:, where 
e! = 0.5 [kRE,]-i. Values of e; can be simply derived in some particular cases, as 
follows. For conducting walls, we have seen through (6.17) that k is maximum a t  
o = 0 for any Pr. This maximum is given by (6.18) ; thus a lower limit of e: can be 
obtained as 

for example e:(O) = .\/2 at Yr = 1. For large w ,  in both conducting and adiabatic 
cases, the use of (7.15) leads to 

E:(O) = 4 2  (pr - t+p&);  (9.1) 

e: = w[2REO Pr1-i. (9.2) 

For conducting walls, the existence of a maximum enhancement for w = 0 and 
Yr = 1, as shown by (6.17), was also exhibited in previous studies concerning the 
BBnard problem with surface temperature modulation (see Venezian 1969). From a 
physical point of view, it is well known that,  for very low frequencies, surface 
temperature modulations affect the entire volume of the fluid exactly as gravity 
modulations and then, the same law must describe the alteration of the stability limit 
for these two kinds of modulation. The new feature obtained herein is the absence of 
the effect of the geometry configuration (e.g. confined or not) on this alteration, as 
shown in 98 by a direct comparison with the results of Venezian (1969), Rosenblat 
& Herbert (1970) and Roppo et al. (1984), while the boundary conditions (conducting 
or insulated walls) have a significant effect as shown in figure 2. 

For high frequencies, it is physically difficult to make direct comparisons with 
the BBnard problem with surface temperature modulation since, under such a 
modulation, only a thin layer near the walls is concerned and then, the equilibrium 
state tends to that of the unmodulated ease. However, under gravity modulation, 
high frequencies correspond to a renormalization of the static gravity field, and then, 
when frequency modulations are large enough in comparison with the characteristic 
time for the diffusion processes (temperature and vorticity), the buoyancy force takes 
a mean value which leads to the equilibrium state of the unmodulated case. This is 
in agreement with the experiment of Donnelly (1964) concerning the stability of the 
flow between rotating cylinders where the inner cylinder has a modulated angular 
speed. He found that the increase of the frequency makes the effect of the 
modulations negligible. 

To our knowledge there is no asymptotic relation for large w in the previous works 
allowing, as here, one to  conclude as to  the similarity of the behaviour of systems 
under the modulation of surface temperature or gravity. Under the present 
assumptions (i.e. e -+ w ) ,  the alteration behaves as w-2 for both kinds of modulation. 
For the gravity modulation, the effect of the thermal boundary conditions clearly 
appears; the alteration is simply proportional to R;,. This result shows a difference 
from the results of Gershuni et al. (1970), which show an extra effect of these thermal 
conditions. 

and 
8 < Pr < a), in which the effect of modulation is a destabilization one for small w .  
The existence of such a destabilization, due to the modulation, has already been 
mentioned for the modulated BBnard problem in infinite horizontal layers under 
special circumstances. Venezian (1969) reported such an effect in the case of free and 
conducting horizontal surfaces, when the temperature of these surfaces is modulated 
in phase. Homsy (1974), also for free and conducting horizontal surfaces, but with a 
gravity modulation, showed that Rg < R&,, in the extreme cases where Pr+O and 
Pr +. co . I n  addition, identical values of RE were found by these authors in both these 

For insulated walls, two domains of Pr have been found (0 < Pr < 8 x 
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g-jitter frequency (Hz) 
g-jitter amplitude (cm s - ~ )  
Mean pug (cm s - ~ )  
Furnace radius (cm) 

Time reference tre, = 

10-1 < w* < 102 
1 0 - 2  < €* < 10-1 
10P < go < 10-1 
1 < r o <  10 

Temperature gradient ("/cm) 

Non-dimensional frequency 

1 < y < 10 

w = w* t,,, = w* 

TABLE 2 .  Typical microgravity conditions 

extreme cases ; a similar property can be seen in the present results for the adiabatic 
case, for w+0 (figure 2). 

We also proved in $ 7  that the asymptotic relation (5.21) established for small E is 
still valid for finite E and large w ,  such that E 4 w (or e* 4 w * ) .  The relation (7.15) 
shows t,hat the modulation always leads to a stabilization for large w * ,  even for finite 
e*. The inequality E* 4 w * ,  which limits the mathematical validity of the method 
presented herein, is not a severe physical limitation ; in particular, it  is easily satisfied 
for several classes of fluids (see tables 1 and 2), in the case of the g-jitter 
modulations. 

10. Conclusion 
The effect of the gravity modulation on the hydrodynamic instability (onset of 
convection) in a long vertical cylinder has been emphasized. A method has been 
proposed to analyse the stability threshold, RE, in the case of periodic gravity 
modulation of small amplitude E ,  by using the Floquet theory. Attention has been 
focused on the alteration of this stability threshold compared to the one of the 
unmodulated case, RE,. These two stability thresholds being connected by the 
relation Rg = Ego + k e2,  only the value of the alteration factor k has to be determined. 
In  fact, as E depends on Rg, another modulation amplitude ev = €*/go = c/R, has also 
been used. We have shown that the expression giving Rg in terms of E ,  is quadratic, 
and that only the solution corresponding to the smallest R," has to be retained ; i t  is 
cxpressed as rZ: = Rgo (1 + k Rgo e;). 

To determine k ,  an analytical approach is possible for certain cases, as presented 
in $5 for insulated walls. But for both conducting and insulated walls a quite general 
technique is described in $ 6 ;  this matrix technique has been used for the azimuthal 
wavenumber n = 1, which corresponds to the most unstable situation for 
unmodulated cases in long cylinders. 

The values of k given by both analytical and matrix approaches are identical for 
all the cases considered herein, i.e. for a very wide range of w and Pr values. Some 
situations have been found where the gravity modulation has a destabilizing effect ; 
this occurs for insulated walls and small w in the ranges 0 < Pr < 8 x and 
8 < Pr < m. In  all the other cases, the gravity modulation is stabilizing. 

In the conducting case, a completely new and very simple expression for k ,  valid 
for any Pr and w ,  has been derived. This expression (6.17) shows that k is always 
positive (stabilizing effect) and presents a maximum for Pr = 1 a t  w + O .  It has been 
possible to compare the product kRg, obtained in our case with previous results 
obtained by Venezian (1969), Rosenblat & Herbert (1970) and Roppo et al. (1984) for 
the modulated-B&nard problem (i.e. without lateral confinement). This alteration 

14 2 
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factor, k R&, is shown to be strictly identical, in the limiting case w = 0, for the long 
vertical cylinder and the Bdnard problems. The behaviour of kR:, is still quite 
similar in the range 0 < o < 20 for Pr < 1, but i t  changes completely for high Pr 
where a destabilization occurs for small w in the modulated-Bdnard problem. 

For large w ,  an asymptotic analysis has been done for small e in $ 5 . 2 ;  it has been 
extended in $ 7  to the case of finite e, for quite general boundary conditions and 
periodic constraints. A quite universal law k = 0.5 P r w P ,  valid for adiabatic and 
conducting conditions (in fact, for any value of the Biot number), has been found 
which shows a stabilizing effect of the gravity modulation for any Pr. This law 
agrees, in the conducting case, with the results obtained by Gershuni et al. (1970), but 
a fundamental difference is exhibited for finite value of the Biot number, b,  where 
the solutions obtained by Gershuni et al. (1970) involve an additional effect of b. 

The matrix approach will be extended to the case of a finite cylinder (finite length) 
in the near future. 

The authors warmly acknowledge fruitful discussions and suggestions by Professor 
G. Iooss a t  the University of Nice and financial support by the Centre National 
d'Etudes Spatiales (Division Microgravitd Fondamentale et Applique'e). 
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